
Poking Holes in Information Hiding

Angelos Oikonomopoulos
Vrije Universiteit Amsterdam

a.oikonomopoulos@vu.nl

Elias Athanasopoulos
Vrije Universiteit Amsterdam

i.a.athanasopoulos@vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

Abstract
ASLR is no longer a strong defense in itself, but it still

serves as a foundation for sophisticated defenses that use
randomization for pseudo-isolation. Crucially, these de-
fenses hide sensitive information (such as shadow stacks
and safe regions) at a random position in a very large
address space. Previous attacks on randomization-based
information hiding rely on complicated side channels
and/or probing of the mapped memory regions. Assum-
ing no weaknesses exist in the implementation of hid-
den regions, the attacks typically lead to many crashes
or other visible side-effects. For this reason, many re-
searchers still consider the pseudo-isolation offered by
ASLR sufficiently strong in practice.

We introduce powerful new primitives to show that
this faith in ASLR-based information hiding is mis-
placed, and that attackers can break ASLR and find hid-
den regions on 32 bit and 64 bit Linux systems quickly
with very few malicious inputs. Rather than building on
memory accesses that probe the allocated memory areas,
we determine the sizes of the unallocated holes in the
address space by repeatedly allocating large chunks of
memory. Given the sizes, an attacker can infer the loca-
tion of the hidden region with few or no side-effects. We
show that allocation oracles are pervasive and evaluate
our primitives on real-world server applications.

1 Introduction

While Address Space Layout Randomization (ASLR) by
itself no longer ranks as a strong defense against ad-
vanced attacks due to the abundance of memory disclo-
sure bugs [1], it is still an essential foundation for more
sophisticated defenses that use randomization to pro-
vide fast pseudo-isolation. Specifically, these defenses
hide important sensitive information (such as shadow
stacks [2], safe regions [3], or redirection tables [4]) at
a random position in a very large address space. The un-

derlying and crucial assumption is that an attacker is not
able to detect the location of the hidden regions.

Thus, the strength of all these defenses hinges entirely
on the ASLR-provided obscurity of the hidden region.
Our research question is whether such trust in the ran-
domization schemes of modern systems like Linux is jus-
tified. In particular, we show that it is not, and introduce
powerful new primitives, allocation oracles, that allow
attackers to stealthily break ASLR on Linux and quickly
find hidden regions on both 32-bit and 64-bit systems.

Randomization for information hiding Most oper-
ating systems today employ coarse-grained ASLR [5]
which maps the different parts of the process (the stack,
heap, and mmap region) in random locations in mem-
ory. The amount of randomness determines the strength
of the defense. As an extreme example, the entropy
for the mmap base on 32-bit Linux is as low as 8 bits,
which means that the region can start at 256 possible lo-
cations in memory. This is well within range of a rel-
atively stealthy brute-force attack. On 64-bit machines,
however, the entropy of the mmap region on Linux is 28
bits and brute forcing is no longer considered practical.
Unfortunately, whatever the granularity and entropy, ad-
dress space randomization is vulnerable to information
disclosure attacks. For example, in the absence of addi-
tional defenses and given a single code pointer, attackers
can easily find other code pointers and eventually enough
code to stitch together a code reuse attack [1].

However, powerful new defenses have evolved that
still rely on randomization, but this time for the purpose
of hiding a secret region of memory in a large address
space [2, 3, 4]. Typically, they ensure the confidentiality
and integrity of code pointers (such as return addresses,
function pointers, and VTable pointers) [3, 6]. As ma-
nipulating a code pointer is vital for an attacker to take
control of the program, preventing unauthorized access
to code pointers also prevents such attacks. Thus, instead
of storing code pointers in the program code, the heap, or

1



the stack, they place them in an isolated memory region.
For instance, some defenses store the return addresses on
an isolated “shadow” stack. Such defenses work as long
as attackers cannot access the isolated region.

While it is possible to isolate these regions using tech-
niques such as Software Fault Isolation (SFI) [7, 8], most
existing solutions adopt cheaper ASLR-based pseudo-
isolation—presumably for performance reasons or since
commodity hardware-supported fault isolation can dra-
matically limit the size of the address space [9]. In other
words, they resort to information hiding by placing the
region at a random location in a very large virtual (and
mostly inaccessible) address space and making sure that
no pointers to it exist in regular memory.

The role of ASLR in information hiding is quite dif-
ferent to its use in countering code-reuse attacks directly,
since even a strong read or write primitive ceases to be
trivially sufficient for breaking the defense. Specifically,
hiding all sensitive pointers forces attackers to probe the
address space repeatedly (with the number of probes pro-
portional to the size of the address space) and risk detec-
tion from crashes [10], or other observable events [11].
While Evans et al. [12] show that problematic implemen-
tations relying on huge hidden regions are still vulnerable
to crashless probing attacks, more advanced defenses are
not [6]. Indeed, the many new defenses that rely on in-
formation hiding show that ASLR is widely considered
to offer strong isolation.

Allocation oracles Unlike previous approaches, our
attack does not revolve around probing valid areas of al-
located memory. Instead, we introduce new primitives to
gauge the size of the holes in the address space. The key
idea is that once an attacker knows the sizes of the holes,
she can infer the start of the hidden regions. In other
words, even if all the pointers into the hidden regions
have been removed, the sizes of the unallocated parts of
the address space “point” into the hidden regions.

To gauge the sizes of the holes, we introduce alloca-
tion oracles: information disclosure primitives that allow
an attacker to allocate large chunks of memory repeat-
edly and thus probe for the possible sizes of the largest
hole in the address space. In most cases, she can use bi-
nary search to find the exact size after a handful of prob-
ing attempts. The pre-conditions for allocation primi-
tives are the ability to make repeated, arbitrarily large
memory allocations, and to detect the success or failure
of such allocation attempts. For instance, the simplest
oracle might be the length field in a protocol header that
controls the amount of memory a server allocates for a
request [13]. More reliably, the attacker may corrupt a
value in memory that is later used as an allocation size.
Assuming the attacker can distinguish between success
and failure of the allocations, this primitive operates as

an allocation oracle. We will show that such cases are
common in real-world server programs.

Allocation oracles come in two main forms.
Ephemeral allocation oracles perform allocations
that have a short lifetime. For instance, a server which
allocates memory for a client request and frees it after
sending the reply. Ephemeral allocation oracles are the
most effective in detecting the hidden regions. In the
absence of ephemeral allocation oracles, we may find
persistent allocation oracles. In this case, the allocation
is permanent. This property alone makes attacks harder,
but not impossible. In this paper, we present exploitation
techniques and examples using either kind of oracle, as
well as a powerful combination of the two. This combi-
nation allows an attacker to disclose the location of small
hidden regions arbitrarily located in an arbitrarily large
address space with no crashes or other detection-prone
side effects.

Contributions We make the following contributions:

• We introduce new types of disclosure primitives,
termed allocation oracles. Unlike existing primi-
tives, allocation oracles do not work by accessing
memory addresses, but instead probe the address
space for “holes”. We describe primitives for both
ephemeral and persistent allocations, and show how
to combine them to break information hiding.

• We describe a methodology to assist an attacker in
easily discovering both ephemeral and persistent al-
location primitives in real programs. We show that
such primitives are very common in practice. When
real-world instances of our primitives are imperfect,
we show how an attacker can exploit timing side
channels to mount effective attacks.

• We show that our primitives can be exploited to
mount end-to-end disclosure attacks on several real-
world server programs. Our attacks render ASLR
ineffective even on 64-bit (or larger) systems and
show that an attacker can quickly locate hidden re-
gions of existing defenses with little or no trace.

Organization We introduce the threat model in Sec-
tion 2. Section 3 provides the necessary background for
our attacks, presented in Section 4. We then describe our
methodology for discovering memory allocation primi-
tives (Section 5) and evaluate their availability and the
effectiveness of the proposed attacks in Section 7. Fi-
nally, we discuss the implications for the defense mecha-
nisms that rely on ASLR for information hiding (Section
7.6), consider mitigations (Section 8), place our attacks
in the context of related work (Section 9), and draw con-
clusions in Section 10.

2



2 Threat model and assumptions

The attacks presented in this paper apply to programs
that contain vulnerabilities, but are, nevertheless, pro-
tected using state-of-the-art defenses. The sensitive data,
vital for the correct operation of the defense, is iso-
lated in a hidden region by means of information hid-
ing. Hardware-based isolation, realized with segmenta-
tion on 32 bit x86 architectures, is not available. These
assumptions correspond to some of the most advanced
anti-exploitation defenses for x86-64 today [3]. Note
that we assume an ideal information hiding implemen-
tation, i.e., all sensitive information is in a hidden region
at a truly random location in a large virtual address space
and the code that performs this pseudo-isolation, as well
as the defense itself, contain no faults. In addition, we
assume that the separation of sensitive and non-sensitive
data is perfect; the process memory holds no references
to the hidden region, and following pointers from non-
sensitive regions can never lead to pointers into the hid-
den region.

We further assume an attacker with arbitrary memory
read and write primitives. In other words, the attacker
can read or write any byte in the virtual address space.
However, we consider that all sensitive data, which could
allow an attacker change the control flow of the program
in order to execute arbitrary code, is hidden in the hidden
region. Therefore, although the attacker can read any
byte in memory, she cannot probe the address space by
brute force without incurring program crashes or other
noticeable events with high probability.

We assume that the target application runs on a mod-
ern Linux system with memory overcommit. This is a
common configuration in many production systems, ei-
ther because of the pervasive use of virtualization tech-
nologies [14], or because this is required or explicitly
recommended for popular and complex services, Re-
dis [15] and Hadoop [16] among others. We also gener-
ally consider (real-world) applications that either handle
allocation failures appropriately or do not crash in a way
that triggers a re-randomization (e.g., by forking and us-
ing execve to replace the worker process image) when
the allocation request cannot be serviced. The goal of
the attacker is to carefully utilize memory oracles to poke
holes into the information hiding and reveal the location
of the hidden region.

3 Background

In this section, we illustrate the organization of a typi-
cal process’ virtual memory address space. While most
of the discussion is based on Linux-based operating sys-
tems, we present fairly generic address space organiza-
tion principles which apply to other systems as well. Un-

Hole Min Max Entropy1

A 130,044GiB 131,068GiB 28 bits
B 1GiB 1,028GiB 28 bits
C 4KiB 4GiB 20 bits

Table 1: Virtual memory hole ranges for a 64-bit
position-independent executable (PIE) on Linux.

derstanding the memory layout of processes is vital for
comprehending the mechanics of memory allocation or-
acles, detailed in the following sections.

The default address space of a typical x86_64
position-independent executable (PIE) on Linux (kernel
version 3.14.7 used as a reference) is depicted in Fig-
ure 1. The system randomly selects an address which
serves as the starting offset of the process’ mmap space. In
kernel concepts, this is a per-address-space mmap_base

variable. Shared objects, including the PIE executable
itself, are allocated in this virtual memory-mapped area,
which extends towards lower addresses. Figure 1 also il-
lustrates several holes (unmapped regions) fragmenting
the address space. Such holes have different purposes
and semantics.

To support typical dynamic memory allocations, the
process relies on a separate [heap] space, at the lowest
level managed by brk/sbrk calls. As the stack grows
down on x86, the heap is naturally designed to grow up
towards the stack. The size of the hole between these
two regions is randomized. The stack, in turn, is lo-
cated at a random offset from the end of the user address
space (i.e., at 0x7fffffffffff), giving rise to another
variable-sized hole at the top.

To protect against trivial exploitation of NULL pointer
dereferences by the kernel [17], processes are not
allowed to map or access addresses ranging from
zero up to an administrator-configurable limit (i.e.,
vm.mmap_min_addr, which defaults to 64KiB). Addi-
tionally, the small hole between the stack and VDSO is
typically less than 2MiB. In less than 1% of the invo-
cations, the VDSO object will end up either adjacent to
the stack or adjacent to the linker object. In both cases,
the layout is effectively the same, except that the small
random hole may not be present.

In practice, the uncertainty in the layout of the address
space is dominated by the sizes of the large hole from
vm.mmap_min_addr to the end of the mmap space (here-
after referred to as hole A), the hole between the stack
and heap (named B) and the hole covering the top of the
user address space (named C). While there may be holes
between the loaded shared objects, those are normally
of a known (fixed) size. The sizes of these holes are all
uniformly distributed in the ranges shown in Table 1.

1Calculated under the assumption that the distributions are indepen-

3



hole

hole

hidden

shared libraries
executable

[heap]

hole

0x0000000

A

[stack]

[vdso]

hole

small hole

B

C
0x7fffffffffff

Figure 1: Virtual memory address space layout for a 64-
bit position-independent executable (PIE) on Linux.

4 Memory Allocation Oracles

In this section, we thoroughly discuss the mechanics of
two memory-allocation oracles, which can dramatically
reduce the entropy of ASLR for accurately locating a hid-
den region in the virtual address space. The oracles can
be realized through an ephemeral allocation primitive
(EAP) and a persistent allocation primitive (PAP), re-
spectively. Both primitives can be triggered by attacker-
controlled input, say an HTTP request in a typical web
server, and force a legitimate program path to allocate
virtual memory with attacker-controlled size. By repeat-
edly using such primitives and monitoring the behavior
of the target program (e.g., the error code in a HTTP re-
sponse message), the attacker can infer the size of holes
(unallocated space) in the virtual memory address space
and learn key properties on its layout.

Whenever an EAP is used, the reserved virtual mem-
ory is released shortly after allocation (e.g., a short-lived
per-request buffer), giving the attacker the opportunity
to probe the target program multiple times. As detailed
later, this allows an attacker to leak the size of the largest
hole in the virtual memory address space and reduce the
entropy of ASLR up to a single bit. The PAP, in turn, is
based on reserving long-lived memory (e.g., a key-value
store entry) and can be used in combination with the EAP
to counteract the last bit of entropy or, by itself, to sig-
nificantly reduce the entropy of ASLR.

dent. Any dependence naturally reduces the entropy.

4.1 Crafting primitives

The ephemeral allocation primitive (EAP) is available
when a program allows attacker-controlled input to force
the allocation of a short-lived memory object with an
attacker-controlled size. In other words, the lifetime of
the object must be such that the object is deallocated in a
short amount of time (or by an attacker-controlled action,
e.g. closing the connection that the object is associated
with).

Even if an attacker induces the program to allocate a
huge memory object of arbitrary size, such an allocation
will succeed as large allocation operations typically re-
sult in an mmap system call. Thanks to demand paging,
the system call returns right after reserving the required
amount of virtual memory address space. The assign-
ment of physical memory pages (page frames) to a vir-
tual memory area, and even the population of the page
tables, is only performed when a page is accessed for the
first time. Hence, as long as the program does not imme-
diately try to access all of the allocated virtual memory
range, little physical memory is used and execution con-
tinues normally. This allows an attacker monitoring the
program output to detect a positive side effect and verify
that the corresponding address space was successfully re-
served.

When the allocation size is larger than the amount of
available virtual memory address space, however, such
allocations will fail, typically causing the program to en-
ter error-handling logic to return a particular error code
(e.g., HTTP’s 500) to the client. This allows an attacker
monitoring the program output to detect a negative side
effect and verify that the allocation failed.

Other than monitoring program behavior for side ef-
fects, the attacker needs to fulfill two requirements to
craft an EAP. First, the attacker needs to find an in-
put which induces the program to allocate a short-lived
memory object. This is, in practice, straightforward,
since most programs allocate objects as part of their
input-handling logic and release them afterwards. Sec-
ond, the attacker needs to coerce the program to use an
attacker-controlled size for the target object. While ex-
ploiting a naive program neglecting to set limits on the
resources it will reserve (for instance, on the buffer size
per client) is an option, in many cases the size of an allo-
cation is calculated based on long-lived values which are
stored in memory. As a result, an attacker in our threat
model can rely on an arbitrary memory write vulnera-
bility to corrupt one of those values and effect a memory
allocation of a chosen size to craft an EAP. An example is
an attacker able to corrupt a buff_size or similar global
variable to control the size of a target allocation instance,
a very common scenario in practice. In later sections, we
substantiate this claim with empirical evidence on real-

4



world applications and present a methodology that can
assist an attacker in the fast discovery of our primitives
(Section 5).

To craft a persistent allocation primitive (PAP), an at-
tacker can similarly abuse allocation instances and cor-
rupt allocation sizes. The only difference is that a PAP
relies on long-lived memory objects whose lifetime is
not under attacker control. For example, a server pro-
gram maintaining long-lived memory objects in a cache
(spanning across several input requests) is amenable to
a PAP, provided the attacker can control the allocation
size. Oftentimes, however, the attacker can leverage the
same primitive to obtain both an ephemeral and a per-
sistent allocation primitive. For example, the common
case of attacker-controlled allocations associated with in-
dividual client connections allow an attacker to craft ei-
ther an EAP (when using nonpersistent connections) and
a PAP (when using persistent connections) in a fully con-
trolled way.

4.2 Breaking IH using the EAP
Many modern defenses depend on information hiding
(IH) in order to protect a sensitive area which con-
tains, for example, code pointers. We now discuss how
a crafted EAP can reveal the hidden area (or hidden
object), with few or even zero program crashes [10]
and other detection-prone events [11] (hereafter, simply
“crashes”). We discuss how an attacker can hide her
traces even further (certainty of no crashes) in the next
subsection. Here, we describe a simplified attack assum-
ing that the defense randomizes the location of the hid-
den object within the largest available memory region.
This assumption is fairly often verified in practice, given
that if all holes in the address space are uniformly consid-
ered for hosting the hidden object, the largest hole (A) is,
on average, 261 times more likely to be selected than the
second largest hole. We later lift this and other assump-
tions on the address space organization in Section 4.3.

Once the hidden object is created, the hole size (A) is
split into two new hole sizes, a large (L) and a small (S)
one. 2 Assuming a random placement of a hidden object
of size H in A, the bounds of L and S are Lmin = (Amin−
H)/2, Lmax = Amax, Smin = 0, Smax = (Amax−H)/2.
Hence, the distributions for the sizes L and S overlap.
However, since in any given instance L > S and, assum-
ing the hidden object H is reasonably smaller than A, L
is now the largest hole in the address space. Hence, an
attacker can quickly identify L using EAP-based binary
search (formalized in Algorithm 1, Appendix A). In de-
tail, at each binary search iteration, the attacker performs
a single EAP invocation for a given allocation size and

2For brevity, we omit explicit discussion of the case where L = S,
which does not deviate from the common case where L > S.

observes its positive or negative side effects to select the
allocation size for the next iteration. When the search
completes, the attacker learns the largest allocation size
and thus L. There can never be any confusion while we
are performing the binary search for L as, if an allocation
cannot be satisfied from the larger hole, it can certainly
not be satisfied by the smaller one.

Since the hidden object is equally likely to have been
placed below or above the midpoint of A, there’s is a
50% chance that L is the lower hole size. In this case,
the location of the hidden object is precisely known: the
base address of the hidden object is exactly located at
vm.mmap_min_addr+L.

If L refers to the hole located higher than the hid-
den object, the uncertainty in the placement of the hid-
den object is the same as the uncertainty in the size
of A. However, we can calculate the location of the
hidden object based on the location of the mmap re-
gion. Given the interlinking of heap, stack, and code
objects [18, 6, 1, 19], an attacker armed with an arbi-
trary memory read primitive can transitively explore al-
located objects and discover the lowest memory mapped
address. For example, in a typical quiescent application
with a predictable memory layout, an attacker may sim-
ply leak __libc_start_main’s return address off the
stack and immediately locate all the other virtual mem-
ory areas (VMAs) in the mmap region. Once the lowest
memory mapped address mmap_bottom is known, the at-
tacker can again deduce the location of the hidden object:
its base address is exactly located at mmap_bottom-L.

Hence, the only uncertainty remaining is in the order-
ing of the two L- and S-sized holes, i.e., a single bit of
entropy. In other words, an attacker probing the address
space with an arbitrary memory read primitive has a 50%
chance of discovering the hidden object on the first try
and a 100% chance if she can tolerate a single invalid
memory access. Even for nonforking server programs,
if a process eventually gets restarted (either manually or
automatically) with different randomization, the attacker
has a 75% chance of guessing the hidden object’s loca-
tion correctly after one crash, 87.5% with two crashes,
93.75% with three crashes and so on. While this attack
is already fast and stealthy with great chances of going
unnoticed in most practical settings, we show how to im-
prove it even further without a single crash in the next
subsection.

4.3 Using both the EAP and the PAP

When, in addition to the EAP, the attacker is in a posi-
tion to employ a PAP as well (as it is often the case in
practice), she can reliably break information hiding with
no application crashes. In addition, she can locate the
hidden object regardless of the original hole it was ran-

5



domly placed in (lifting our original assumptions). For
simplicity, let us first consider the case of a hidden object
placed somewhere in the middle of A, such that L and S
are the first and second largest hole sizes in the address
space. To recover L, the attacker begins by executing the
EAP-only attack in Section 4.2. Subsequently, she can
simply use the PAP to perform a L-sized allocation and
eliminate the largest (L-sized) hole from the process’ ad-
dress space. Finally, she can repeat the same EAP+PAP
strategy on the now largest allocation size in the address
space to recover S and fill the remaining (S-sized) hole.

Since A is now completely hole-free, an attacker
armed with an arbitrary memory primitive can reliably
probe for the hidden object in the two possible loca-
tions in A and eliminate the remaining uncertainty. In
detail, if the L-sized hole was at the beginning of the
address space (and has now been filled by the PAP al-
location), a read from vm.mmap_min_addr+S will be
accessing zero-filled pages. If the S-sized hole was at
the beginning of the address space, in turn, a read from
vm.mmap_min_addr+S will be accessing pages contain-
ing data from the hidden object. In either case, by com-
bining the EAP and the PAP, the attacker can easily dis-
close the location of the hidden object with no risk of
crashes, quickly and stealthily exhausting information
hiding’s entropy.

Let us now reconsider our original assumption. In the
general (if unlikely, for practical reasons 3) case, the hid-
den object might be placed in a hole other than A. How-
ever, this is hardly a problem for an attacker armed with
both the EAP and PAP. Such a zero-knowledge attacker
can simply start with a single iteration of the EAP+PAP
attack to fill the largest hole in the address space, then
move to the second largest, and so on, until she can in-
fer enough knowledge to first locate the hidden object’s
owning hole and then its location. For example, if the
first largest possible hole identified is sizeof(A), the at-
tacker can learn the object is placed in either B or C. If the
second largest possible hole identified is sizeof(B), the
attacker can learn the object is placed in C. At that point,
she can perform the A-style EAP+PAP attack introduced
earlier and locate the object with no crashes.

We note that exhausting the virtual address space with
our iterative EAP+PAP attack strategy is not a concern
in real-world scenarios. First, legitimate program allo-
cations are normally satisfied by allocator arenas which
rarely need to be extended during steady-state opera-
tions. In addition, the location of a target hidden object
can in practice be determined without exhausting all the
available holes. For example, an attacker could infer the
location of a hidden object in A by only filling the L-sized
hole and reliably reading from vm.mmap_min_addr+L.

3Placing the hidden object between stack and heap may impose un-
expected limits on the growth of an application’s data.

4.4 Using only the PAP

When allocations have to be persistent (e.g., only the
PAP is available or the EAP has less desirable side ef-
fects), there are two main difficulties. First, given what
we know about the hole size distributions, there might be
multiple holes which can satisfy a request, but, without
knowing their actual sizes, we cannot always tell which
hole an allocation came from. Second, when an alloca-
tion succeeds, even if we know which hole it came from,
we learn that that hole is at least as large. Contrary to
the EAP though, we cannot retry a larger allocation size
since we cannot “undo” the allocation.

An example serves to demonstrate. Suppose we start
with the typical layout of a PIE executable (Table 1). Let
us say we attempt an allocation of 130,500GiB and the
allocation succeeds. The allocation was necessarily sat-
isfied from hole A. We now have a lower bound on the
size of A, yet we would like to find out its exact size.
However, if we try to allocate a value in the range of
0-568GiB and the allocation succeeds, we cannot know
whether the space was reserved in hole A or hole B as
their size distributions now overlap.

We have designed and implemented a novel attack
strategy which significantly reduces the uncertainty in
the sizes of the holes. Our algorithm tracks the maxi-
mum allocatable size, as well as the allocated size, for
each hole in what constitutes a state. Our approach then
relies on two insights. First, it is highly preferential to
probe using allocation sizes that can only be satisfied by
a single hole. Second, when forced to perform an alloca-
tion which could have been satisfied from more than one
hole, we need to fork and keep track of multiple states
to model each feasible configuration of the holes in the
targeted address space.

Building on these insights, our algorithm follows a
cost-driven strategy to allow an attacker to select an op-
timal tradeoff between the number of allocation attempts
and the entropy reduction obtained. We quantify this
tradeoff in Section 7.5 and refer the interested reader to
Appendix B for a detailed walkthrough of the formalized
algorithm.

4.5 A more powerful EAP-only attack

Section 4.2 detailed how to locate the hidden object when
it was placed in the largest address space hole (A). We
then lifted this restriction by making use of the PAP in
Section 4.3. An alternative way of stealthily probing
for holes other than the largest one using the EAP only
(when no PAP is available), is to try and trigger more
than one EAP simultaneously. After having recovered L
(Section 4.2), the attacker can simultaneously issue an
allocation of L bytes while using a different allocation

6



request to probe for S. Even if the window is small, re-
peated simultaneous requests can make the chance of a
false allocation arbitrarily small. When the program can
afford more EAPs to be issued in parallel, the attack fur-
ther improves, as the L-sized hole can be kept filled more
reliably while a binary search is running to determine S.
This approach generalizes to any number of holes.

4.6 Handling internal allocations
The attacks detailed in this section consider alloca-
tion primitives directly or indirectly based on mmap.
However, when the primitive interacts with standard
glibc allocation functions (e.g., malloc, calloc,

posix_memalign, etc.), the result is one internal allo-
cation for exceedingly large requests. Even though the
requested size clearly does not fit in the largest available
hole, glibc (version 2.19) allocates a new heap arena. The
heap arena is allocated in the memory-mapped space and
it is 64MiB-aligned. Therefore, the actual size of A that
is recovered by a binary search differs from the previous
end of the memory-mapped area by a random number
which is 14 bits wide (226/212 = 214).

Nevertheless, this is not a problem in practice, as the
heap arenas form a circular, singly-linked, list. There-
fore, an attacker armed with an arbitrary memory read
primitive can navigate the links from the main alloca-
tion arena and discover all arenas in use (typically there
would only be one link to follow). The main arena is a
static variable in glibc, so it is located at a known (binary-
dependent) offset from the highest address of the mmap

space. Hence, as soon as the attacker leaks a pointer into
the mmap space, she can easily account for the newly al-
located heap arena as well.

5 Discovering Primitives

So far, in Section 4, we have discussed the mechanics of
ephemeral and persistent memory-allocation primitives,
which can assist an attacker in revealing the allocated
ranges of a process in the virtual address space. In this
section, we show that dynamic data-flow tracking (DFT)
techniques applied to popular server programs can effec-
tively assist attackers in discovering allocation instances
that can potentially be abused to craft our primitives.

Discovering primitives that can result in powerful
memory-allocation oracles involves identifying memory
locations that, once controlled, can influence the input
parameters of memory-allocation functions. Recall that,
from Section 2, we assume attackers that are already in
possession of (at least) one arbitrary read and write prim-
itive. What the attacker lacks is a methodology to guide
her to apply the read/write primitives and successfully
craft EAPs and PAPs.

To model an attacker with arbitrary read/write con-
trol over memory, we start our analysis from a quies-
cent state of the program under attacker control. This
state can be also manipulated and exercised over time by
the attacker. As a simple example, consider a vulner-
able web server. Assume the attacker can send a first
a special-crafted HTTP request to trigger an arbitrary
memory write vulnerability and gain control over mem-
ory. Next, the attacker issues a second request to invoke
a memory allocation oracle. Therefore, in this particu-
lar example, our attacker-controlled quiescent state cor-
responds to that of an idle web server waiting for new
requests. Once the second request is served, many parts
of memory can be influenced either explicitly or implic-
itly. At one point, processing of the request triggers some
memory-allocation function which serves as an oracle.
It is important to stress that, depending on the server’s
logic, parts of memory are overwritten (through succes-
sive allocations), while the request is processed. These
parts cannot be generally controlled by the attacker us-
ing her arbitrary read/write primitives. However, the at-
tacker still controls all the memory which was available
in the original quiescent state (before the second request
takes place). As long as memory of that state reaches a
memory-allocation function, then the attacker can suc-
cessfully use the oracle. Therefore, what we need to de-
termine is the memory locations that influence memory-
allocation sites and are still attacker-controlled, once the
second HTTP request triggers memory-allocation func-
tions.

Practically, this model can be easily realized using
DFT. For our purposes, we use Memory-allocation Prim-
itive Scanner (MAPScanner), a custom scanner based
on libdft [20]. We start an application instrumented by
MAPScanner, with all memory untainted, with no taint
sources, and with all memory-allocation functions de-
fined as sinks. Once the application is idle, we signal
MAPScanner to taint all memory. At this point, the target
quiescent state is defined and we assume that all mem-
ory is attacker-controlled. We then proceed and send a
request to the server application. Any subsequent mem-
ory allocations that are triggered by the second request,
since we have defined zero taint sources, wash out the
taint of previous attacker-controlled memory. While the
request is processed, MAPScanner reports all memory-
allocation functions which are initiated with input from
still-tainted, and therefore, still-controlled memory.

Notice, that, depending on the selected quiescent state
and the input request, the attacker can discover more or
fewer primitives. Using several complicated quiescent
states, for example, those between handling two succes-
sive requests or between accepting the socket and receiv-
ing data, may uncover additional primitive candidates.

Once primitive instances are found, the attacker sim-

7



ply needs to locate the controlling data in memory (often
a buff_size global variable originating from the con-
figuration file), corrupt the data (and thus the allocation
size) with an arbitrary memory write primitive, and mon-
itor the execution for side effects. To classify a potential
primitive as an EAP or PAP, the attacker will need to use
the source or runtime experimentation to determine the
lifetime of the corresponding allocated object along dif-
ferent program paths. Further, manual investigation is
required to eliminate primitives that might not be usable
because the value in memory is subject to additional va-
lidity checks in the attacker controlled paths.

In practice, we found that even when selecting the
simplest quiescent state (i.e., idle server) and input (i.e.,
simple client request), an attacker can locate sufficient
usable primitives to mount our end-to-end attacks (see
Section 7).

6 Exploiting Timing Side Channels

Not all discovered primitives may automatically guar-
antee a realistic and crash-free attack. Certain types of
primitives may not have any directly observable side ef-
fects (e.g., the server transparently recovering from allo-
cation failures), making exploitation more complicated.
Other types of primitives may result in program crashes
(e.g., the server failing internal consistency checks), typ-
ically in both successful and unsuccessful cases, again
making it difficult for an attacker to distinguish the two
cases via direct observation. In both scenarios, however,
an attacker can still infer the allocation behavior (success
or failure) by measuring the time it takes to handle every
particular request. We exemplify timing attack strategies
for both the imperfect primitives presented above.

Even when a primitive has no directly observable side
effects, allocation of memory and failure to allocate
memory normally take a different amount of time. On
Linux, for instance, a successful allocation is typically
satisfied by a small VMA cache, avoiding lengthy walks
of the red-black tree of virtual memory area (VMA)
structures. However, on a VMA cache miss, before
declaring an allocation failure, the kernel needs to walk
all the nodes in the red-black tree in a compute-intensive
loop, which takes measurably longer time to complete
generating a timing side channel [21]. In fact, many ker-
nel optimizations, such as VMA merging [22], explicitly
seek to reduce the run-time impact of such expensive red-
black tree walks. The timing signal becomes stronger for
programs maintaining many VMAs and much stronger
if the attacker can lure the program into allocating even
more VMAs (however, VMA merging normally makes
this difficult even for a PAP-enabled attacker). Even
stronger timing side channels may be generated by the
program itself. For example, to transparently recover

from allocation failures, the program may employ com-
plex and time-consuming error-handling logic or log the
event to persistent storage.

When a primitive results in program crashes in suc-
cessful and unsuccessful cases, in turn, the presence
and the strength of timing side channels is entirely sub-
ject to the internal cause of the crash. Interestingly,
we found that the leading cause of crashes results in a
very strong side channel. In fact, successful allocation-
induced crashes are most commonly induced by a server
attempting to fully initialize (or access) the huge allo-
cated block, resulting in several time-consuming page
faults before leading to the final out-of-memory error. As
shown in Section 7, timing attacks which rely on crashes
are remarkably effective in practice.

7 Evaluation

7.1 Primitive Discovery Results

We apply MAPScanner to a variety of well-known and
popular server software. In particular, we consider BIND
9.9.3 (a DNS server), lighttpd 1.4.37 and nginx 1.6.2
(two popular web servers), as well as mysql 5.1.65 (a
widely deployed database server). We built all programs
using their default options (i.e. optimizations were en-
abled).

Since the presented applications have the form of a
server accepting and servicing requests, we select, as the
(simplest possible) attacker-controlled quiescent state,
the point when the server is idle waiting for incom-
ing connections, and, as the (simplest possible) attacker-
controlled input, a default request to the server (Section
5). Of course, motivated attackers can carry out similar
analyses starting from several additional quiescent states
and inputs, so our results here are actually an (already
sufficient) underapproximation of the real-world attack
surface. Notice, finally, that we assume each server is
being protected by an information-hiding-based defense
mechanism which thwarts direct exploitation attempts
(e.g., control-flow diversion).

Table 2 presents all the primitives discovered by our
analysis. We name each instance of a primitive after the
variable that an attacker needs to corrupt in memory to
craft the corresponding allocation oracle. For each of
the primitives, we report the type width of the memory-
resident value that influences the allocation site. While
32-bit fields are only sufficient to bypass 32-bit (and
not 64-bit) information hiding, we believe their avail-
ability can be indicative of the risks for 64-bit defense
mechanisms—e.g., code refactoring changing an alloca-
tion size type to the common 64-bit size_t type may
inadvertently introduce allocation oracles.

8



Table 2: For each particular application, we report the number of primitives found, the width of the allocation value,
whether the primitive forces a crash, whether timing is necessary to determine success and if the primitive can be
persistent as well. The “RE” (Residual Entropy) column assumes an attacker can reliably exploit the associated timing
side channels. Values marked with (*) refer to lighttpd configured in forking mode.

Primitive Size Crash-free Timing-dependent EAP PAP RE (bits)
bind mgr->bpool 64-bit 7 3 3 7 1

heap->size 32-bit 3 7 3 Primarily 0
lighttpd buffer->size#1 64-bit 7 3 3 7 0∗

buffer->size#2 64-bit 7 3 3 7 0∗

config_context->used 64-bit 7 3 3 7 0∗

nginx ls->pool_size 64-bit 3 7 3 3 0
client_header_buffer_size 64-bit 3 7 3 7 1

request_pool_size 64-bit 3 7 3 7 1
mysql net->max_packet 32-bit 3 7 3 3 0

net_buffer_length 32-bit 3 7 3 3 0
connection_attrib 64-bit 3 7 3 3 0

query_prealloc_size 64-bit 3 3 3 3 1
records_in_block 32-bit 3 7 3 7 1

Additionally, we checked whether utilizing a primi-
tive carried a risk of crashes (“crash-free” column). For
primitives that did not provide directly observable side
effects, the “timing-dependent” column indicates that the
attacker needs to conduct a timing side channel attack
to craft her primitives (we provide an example in Sec-
tion 7.3). The EAP and PAP columns specify that the
primitive can be used to perform an ephemeral and per-
sistent allocation (respectively). Finally, we quantify the
residual entropy after we perform the best attack at the
attacker’s disposal for each primitive.

For each of these applications, our simple methodol-
ogy was sufficient to discover 64-bit primitives able to
quickly locate hidden objects with no residual entropy.
In most cases, the discovered primitives were crash-free
and could function as both EAPs and PAPs.

nginx and mysql are the best examples. They both
provide ideal EAP+PAP attack primitives to stealthily
bypass 64-bit information hiding with little effort. It is
also worth noting that the connection_attrib prim-
itive in mysql involves overwriting the requested stack
size in a pthread_attr_t struct. As such, we ex-
pect a similar primitive to be available in all servers
that create threads to service clients (either overwriting
an application-specific attribute structure or the one in
glibc).

For lighttpd, the server’s default configuration only al-
lows the EAP-only attack, but, when the server is config-
ured with forked worker processes, an attacker can suc-
cessfully conduct the side-channel attack exemplified in
Section 7.3 to eliminate all entropy and bypass informa-
tion hiding.

Bind stands out as, depending on the server config-

uration, the heap->size primitive might be usable as
an EAP or may effectively only function as a PAP. The
reason for this behavior is that the effected allocation be-
comes part of a relatively long-lived cache. Hence, its
lifetime is determined by administrator choices and per-
formance considerations. When cached objects are not
eagerly expired, the primitive may only be usable as a
PAP for the duration of a practical attack.

Overall, our simple analysis shows that real-world
information-hiding-protected applications stand very lit-
tle chance against attackers armed with allocation ora-
cles.

7.2 EAP+PAP attack on nginx

To illustrate how the combined EAP+PAP attack works
in practice, we consider the ls->pool_size primitive
discovered during our investigation of the nginx web
server (Table 2).

When servicing a new connection, nginx’s
ngx_event_accept() function allocates a per-
connection memory pool (c->pool) using the size
stored in the listening socket data structure associ-
ated to the socket the accept() originated from.
ngx_event_accept() instantiates the pool by calling
out to ngx_create_pool(), which eventually allocates
the required memory by means of posix_memalign().

Using our primitive discovery methodology, we were
easily able to determine that the size argument to
posix_memalign() originated from a value resident in
live memory for our idle attacker-controlled quiescent
state. This means that an arbitrary memory write vul-
nerability in any of the code that processes untrusted in-

9



put can be used to overwrite this value with an attacker-
selected size, once the memory location is known.

We then verified that ls->pool_size is triv-
ially accessible by following the ls field of the
ngx_connection_t structure, a pointer to which is
always available on various stack locations while the
server is executing request-processing code.

Using this information, the attacker is able to craft an
ephemeral allocation primitive by using an arbitrary read
to navigate the pointer chain until she determines the ad-
dress of ls->pool_size. At this point, she can effect
a call to posix_memalign() with a size of her choos-
ing by overwriting ls->pool_size and then opening a
connection to the server. If the allocation request was
successful, the attacker can issue an HTTP request over
that new connection (positive side effect). If the alloca-
tion cannot be accommodated, the connection is forcibly
closed by the server (negative side effect).

Using the same procedure, the attacker can craft a PAP
by simply keeping the connection open in the last step.
To conduct the complete attack, the attacker first employs
the EAP to determine the size of the larger of the two
holes around the hidden object (for simplicity, we only
discuss the case when the hidden object is placed in the
largest contiguous pre-existing hole; other scenarios are
investigated in Section 4.3). Having determined the max-
imum allocation (i.e., hole) size, she relies on the PAP to
allocate the exact size of the larger hole, taking it out
of the picture. She then proceeds to conduct the EAP-
based attack against the smaller hole around S. Finally,
she simply probes at address vm.mmap_min_addr+S to
complete the attack, as described in Section 4.3.

7.3 Timing-based attack on lighttpd

Next, we focus on the execution of an EAP-only attack
which relies on a timing side channel. To demonstrate
such an attack, we rely on the config_context->used
primitive in lighttpd. In order craft this primitive, we
configured lighttpd to use worker processes by setting the
server.max-worker configuration variable to a non-
zero value. With no loss of generality, we limit our anal-
ysis to one worker process, as an arbitrary memory ac-
cess primitive makes it a matter of book-keeping to tag
the workers (e.g. by writing a different value for each
worker to an unused memory location), so that the attack
code can target a single process.

Again using our primitive discovery methodology, we
easily determined that srv->config_context->used
is used as an argument to calloc() in the body
of connection_init(). Similarly, we showed
that pointers to srv are available in the stack
frames above the event loop, which renders
srv->config_context->used trivially accessi-

ble to an attacker equipped with arbitrary memory
read/write primitives.

The second argument to calloc() at this call site is
sizeof(cond_cache_t), which amounts to 144 bytes.
Since that is less than the default page size on x86, we
can always find a value that will result in the allocation
of any given number of pages.

Crucially, the return value from calloc() is never
checked for failure. Therefore, the only way to
determine whether the allocation succeeded or not
is to send a simple request so as to drive the
server to a path which will dereference the pointer.
That path is simply http_response_prepare() ->

config_cond_cache_reset(), which will iterate over
all elements of the array. As a result, if the allocation
fails, the worker process immediately crashes on trying to
access the first element, resulting in a closed connection
for the client. If the allocation succeeds but the allocated
size is much larger than the amount of physical mem-
ory on the system, this allocation incurs several lengthy
page faults before causing an out-of-memory (OOM)
condition—on which Linux’ “OOM killer” terminates,
with high reliability, the worker process. If the sys-
tem can survive faulting in all the allocated pages (pre-
sumably because the allocation was “small”), the server
eventually sends back a response. Using either the tim-
ing or the reception of an HTTP response, we can infer
whether the attempted allocation succeeded or failed.

When the worker process crashes or is terminated by
the OOM killer, the parent is notified and forks a new
child in replacement (indeed one of the motivations for
using worker processes in server software is for crash re-
covery purposes). Each new worker process inherits the
address space of the parent; hence, all memory regions
(including the hidden object) remain at stable virtual ad-
dresses across worker restart events.

Given the several page faults incurred before a crash,
the timing side channel we rely on yields a very strong
signal. In our testing, we performed the attack 40 times
and were able to reliably differentiate between a success-
ful and a failed allocation in all of them. By using the
same primitive as a PAP (as is possible in this configura-
tion), we were able to persistently allocate the recovered
size for the largest hole and then repeat the EAP attack
on the smaller hole as done earlier. In summary, by re-
lying on EAP+PAP primitives and a strong timing side
channel we could successful recover the address of the
hidden object and bypass information hiding in all cases
in our experiments.

7.4 EAP-only attack

We evaluated the accuracy and performance of the EAP
in defeating the information-hiding properties of ASLR

10



F
r
e
q
u
e
n
c
y

0

50

100

150

200

250

300

350

Number of allocation attempts
68 69 70 71 72 73

Figure 2: Histogram of the number of operations for re-
covering the exact hole sizes around a hidden object in
an nginx executable [n=1000]

by preallocating a hidden object of a size of 2MiB in
the address space of nginx (compiled as a position-
independent executable) and then trying to determine the
sizes of the larger and smaller holes on either side of it,
as described in Section 7.2. Taking into account the com-
plications and workarounds described in Section 4.6, we
were able to exactly determine the size of both the larger
and smaller hole and subsequently uncover the exact lo-
cation of the hidden object, without incurring any invalid
memory accesses.

Figure 2 depicts the number of required allocation at-
tempts over 1000 runs (using different random configura-
tions). On localhost and using gdb to effect the arbitrary
memory access, the attack completed after an average of
28.20s with a median of 28.21s.

7.5 PAP-only attack

When the only primitive available to the attacker is
the PAP, she needs to consider a number of tradeoffs.
Clearly, the attacker is interested in reducing her entropy
with respect to the position of the hidden region in the
targeted address space. At the same time, different con-
siderations might cause her to strive for minimal or rapid
interaction with the target process. For example, a very
large number of requests to a remote server might very
well increase the chance that the attack will be noticed
by network intrusion detection systems. Similarly, as the
duration of the attack increases, so does the chance that
unrelated process activities, such as servicing requests
for other clients or periodically scheduled work, may in-
terfere with the workings of the algorithm.

There exist two tunable parameters that affect the be-
havior of our PAP-only attack. One selects between the
number of allocation attempts and the entropy reduction
obtained, the other between entropy reduction and risk of
failure.

Number of operations

0 200 400 600 800 1000 1200 1400 1600 1800

M
e
d
i
a
n
 
E
n
t
r
o
p
y
 
(
b
i
t
s
)

14

16

18

20

22

24

Figure 3: Parameter space exploration for the PAP-only
attack

Figure 3 presents the number of allocation attempts
versus the median of the residual entropy in the size of
the largest hole after the completion of the attack, for ev-
ery pair of parameter values that we explored. We can
observe that extreme choices of the parameter values re-
sult in pathological behavior, either in the number of op-
erations or in the residual entropy or both.

Conversely, there exist better parameter choices which
do reasonably well for both metrics. Appendix C goes
into more depth on the parameter values and their effect
on the behavior of the attack.

Observe that, in attack scenarios where a number of
requests on the order of a thousand is acceptable, there
exist several parameters for which the median residual
entropy is reduced to 15 bits. Notice also that when the
size of the hidden region can be expected to be compa-
rable to the residual entropy, the chances of successfully
probing for the region are significantly increased.

For a round-trip time of 1s, even the PAP-only attack
would take at most half an hour (12 minutes on average),
which is still an eminently practical amount of time in
many real-world settings.

7.6 Effectiveness against modern defenses

The presented attacks change the picture for the protec-
tion offered by state-of-the-art defense mechanisms that
rely on information hiding. CPI’s safe area [3] and many
other prior solutions [4, 23, 19, 24] rely on information
hiding to protect a single hidden region. For all such so-
lutions, our attacks in Section 4 apply directly and can

11



locate the hidden region with little or no crashes. Prior
work has demonstrated a memory probing-based crash-
free CPI bypass with roughly 110,000,000 operations on
nginx [12]. Using our combined EAP and PAP crash-free
attack, we can replicate their attack needing only 74 op-
erations in the worst case (Fig. 2). This is a 1,400,000x
improvement in attack efficiency, which, projected on the
request time reported in [12], translates to 0.23s (rather
than 97 hours) to locate the hidden region. In addition,
our crash-free attack is even faster than the fast crash-
prone attack presented in [12] (6s with 13 crashes).

More recent client-side probing attacks [11] offer
similar guarantees (i.e., locating CPI’s safe area in 32
probes), but their probing strategy relies on exception
handling rather than crash recovery, ultimately improv-
ing the attack efficiency. We note that both existing prob-
ing attacks [12, 11] exploit assumptions on CPI’s huge
hidden region size (on the order of 242 bytes when using
a sparse table and 230.4 when utilizing a hash table [11])
to reduce the entropy and make the attack practical. In
stark contrast, our attacks make no assumptions on the
region size, and doing so would allow even a PAP-only
attack to succeed without crashes.

Other solutions, such as ASLR-Guard [6], SafeS-
tack [3], and other shadow stack implementations [25],
rely on information hiding to protect multiple hidden re-
gions. For example, all the shadow stack solutions need
to maintain a per-thread hidden region. We note that
our attacks generalize to multi-region information hid-
ing with essentially the same impact. In particular, while
multi-threaded programs disqualify the simple EAP-only
attack, our best (EAP+PAP) attack naturally extends to
multi-region solutions and can quickly bypass them (al-
though more allocations may be required).

Finally, many leakage-resilient defenses [26, 27,
28, 29] enforce execute-only memory to protect the
hidden (code) region from read-based disclosure at-
tacks [1]. However, such defenses are susceptible to
execution-based disclosure attacks in crash-tolerant ap-
plications [10]. To counter such attacks, some solutions
deploy booby traps in out-of-band trampolines [26, 27].
With allocation oracles, an attacker can sidestep the
booby-trapped trampolines and quickly find the hidden
region, enabling more practical and guided execution-
based disclosure attacks against such defenses.

8 Mitigations

One strategy to defend against allocation oracles is to en-
force an upper limit on the maximum amount of virtual
memory that a process can allocate. This mechanism is
already available on Linux (and other POSIX-compatible
operating systems) via the RLIMIT_AS resource limit
(adjustable via setrlimit). Setting this limit to a small,

though still sufficient for most current applications, value
would thwart any attempts to probe the sizes of the larger
holes in the address space. The resource limit can be set
by the application itself (in which case, a defense mech-
anism could intercept it and adjust it to accommodate its
own needs for virtual addresses) or it can be hard-capped
by the administrators without any need for program ad-
justments. The main difficulty lies in predicting the max-
imum virtual address space usage under all conceivable
conditions so as to never deny legitimate allocation re-
quests for production applications. Nonetheless, its wide
availability, straightforward deployment, and robustness
(see below) make RLIMIT_AS our primary recommenda-
tion for compatible workloads and configurations.

For some classes of applications (especially those re-
lying on memory overcommit), limiting the amount of
virtual address space available may be problematic, e.g.,
when memory-mapping huge files. In such cases, one
could switch to a strict overcommit policy and have
the applications always use mmap’s MAP_NORESERVE

flag for huge—but known to be benign—allocations.
MAP_NORESERVE instructs the kernel not to count the
corresponding allocations towards the overcommit limit.
However, this mitigation strategy would still allow an at-
tacker to inject the MAP_NORESERVE flag in mmap calls
using memory-resident arguments and craft our primi-
tives. Another issue with such a strict overcommit strat-
egy is that it is incompatible with memory-hungry ap-
plications that rely on fork and cannot simply switch to
vfork (the redis server being a prime example). This
problem can only be directly mitigated with the addition
of a new flag to the clone system call to mimic the se-
mantics of MAP_NORESERVE.

In some setups, one may deploy an IDS looking for
anomalous events (i.e., allocations) in a given applica-
tion [30]. However, this approach generally requires per-
application policies (e.g., only allow huge allocations of
a specific size). A policy looking for frequent huge al-
locations in arbitrary applications is more generic but
problematic, as an attacker can easily dilute the very few
probing attempts required by our attacks over time [30].

Finally, defense mechanisms could bracket their hid-
den regions with randomly-sized trip hazard areas [31] to
deter in-region memory probing. This is the immediate
systemwide mitigation we recommend for information-
hiding-based solutions already deployed in produc-
tion [32]. Albeit still probabilistic (and thus prone to at-
tacks), such solution can also provide efficient protection
against other (known) side-channel attacks [31].

9 Related work

We distinguish between approaches that that aim at
breaking ASLR in general and approaches that try to

12



break more advanced defense techniques that rely on
ASLR-based information hiding.

Breaking ASLR has been fertile research ground for
years and became especially popular in recent years.
From the outset [30], pioneering work showed that the
randomization in 32-bit address spaces provide insuffi-
cient entropy against practical brute-force attacks, so we
focus on 64-bit architectures (x86-64) in this section.

In practice, bypassing standard (i.e., coarse-grained,
user-level) ASLR implementations is now common. For
an attacker, it is, for instance, sufficient to disclose a sin-
gle code pointer to de-randomize the address space [33].
Even fine-grained ASLR implementations [34] are vul-
nerable to attacks that start with a memory disclosure and
then assemble payloads in a just-in-time fashion [1].

More advanced attack vectors rely on side channels
via shared caches. Specifically, recently accessed mem-
ory locations remain in the last-level cache (LLC) which
is shared by different cores on modern x86-64 proces-
sors. As it is much faster to access memory locations
from the cache rather than from memory, it is possi-
ble to use this timing difference to create a side chan-
nel and disclose sensitive information. By perform-
ing three types of PRIME+PROBE attacks on the CPU
caches and the TLB, Hund et al. [35] could completely
break kernel-level ASLR by mapping the entire virtual
address-space of a running Windows kernel. To perform
a PRIME+PROBE attack, the attacker needs the mapping
of memory locations to cache sets. In modern Intel pro-
cessors, this mapping is complex and reverse engineering
requires substantial effort [35]. However, performance
counter-based and other techniques have been proposed
to lower the reverse engineering effort [36].

Even without a priori disclosures, attackers may still
break ASLR using Blind ROP (BROP) [10]. A BROP
attack sends data that causes a control transfer to an-
other address and observes the behavior of the program.
By carefully monitoring server program crashes, hangs,
or regular output, the attacker can infer what code exe-
cuted and, eventually, identify ROP gadgets. After many
probes (and crashes), she gets enough gadgets for a ROP
chain. BROP is a remote attack method applicable (only)
to servers that automatically respawn upon a crash.

In general, leaking information by means of side chan-
nels is often possible. To launch such an attack, an at-
tacker typically uses memory corruption to put a program
in a state that allows her to infer memory contents via
timings [21, 37, 12] or other side channels [10].

As ASLR by itself does not provide sufficient protec-
tion against the attacks described above, the community
is shifting to more advanced defenses that build on ALSR
to hide sensitive data (such as code pointers) in a hidden
region in a large address space, typically not referenced
by any pointers within the attacker’s reach.

Hiding secret information in a large address space
is now common practice in a score of new defenses.
For example, Oxymoron [4] protects the Randomization-
agnostic Translation Table (RaTTle) by means of infor-
mation hiding, and Opaque CFI [23] protects the so-
called Bounds Lookup Table (BLT) in a similar way.
Likewise, Isomeron [19] keeps the execution diversifier
data secret and StackArmor [25] isolates potentially vul-
nerable stack frames by means of hiding in a large ad-
dress space. Finally, on x86-64 architectures, CFCI [24]
also needs to hide a few MBs of protected memory.

One of the best-known examples of a defense that
builds on ASLR-backed information hiding is Code
Pointer Integrity [3]. CPI splits the address space in a
standard and a safe region and stores all code pointers in
the latter, while restricting accesses to the (huge) safe re-
gion to CPI-intrinsic instructions. Moreover, it also pro-
vides every thread with a shadow stack (called SafeStack
in CPI) in addition to the regular stack and uses the for-
mer to store return addresses and other proven-safe ob-
jects. Both the shadow stacks (which are relatively small)
and the safe region (which is huge) are hidden at a ran-
dom location in the virtual address space.

By means of probing on a timing side channel, Evans
et al. showed that it is possible to circumvent CPI
and find the safe region [12]. However, depending on
the construction of the safe region, the attack may re-
quire a few crashes or complete in several hours in or-
der to be stealthy (i.e., crash-free). Moreover, simi-
lar to the recent CROP [11] (which instead relies on
specially crafted crash-resistant primitives), this attack
needs to resort to full memory probing to locate small
hidden regions (unlike CPI’s) in absence of implementa-
tion flaws. Full memory probing forces the attacker to
trigger many crashes and other detection-prone events,
and its efficiency quickly degrades when increasing the
address space entropy.

Concurrent work [31] relies on thread spraying to
reduce the entropy in finding a per-thread hidden ob-
ject. Allocation oracles can make thread spraying attacks
faster by providing a more efficient disclosure primitive
compared to the memory probing primitives used in [31].

Unlike all the existing attacks, allocation oracles
demonstrate that an attacker can craft pervasively avail-
able primitives and locate the smallest hidden regions in
the largest address spaces, while leaving little or no de-
tectable traces behind.

10 Conclusions

We have shown that information hiding techniques that
rely on randomization to bury a small region of sensitive
information in a huge address space are not safe on mod-
ern Linux systems. Specifically, we introduced new in-

13



formation disclosure primitives, allocation oracles, that
allow attackers to probe the holes in the address space:
by repeated allocations of large chunks of memory, the
attacker discovers the sizes of the largest areas of unal-
located memory. Knowing the sizes of the largest holes
greatly reduces the entropy of randomization-based in-
formation hiding and allows an attacker to infer the lo-
cation of the hidden region with few to no crashes or no-
ticeable side-effects. We have also shown that allocation
oracles are pervasive in real-world software.

Unfortunately, information hiding underpins many of
the most advanced defense mechanisms today. Without
proper mitigation, they are all vulnerable to our attacks.
While one may deploy more conservative memory man-
agement polices to limit the damage, we emphasize that
the problem is fundamental in the sense that allocation
oracles always reduce the randomization entropy, regard-
less of the mitigation and the address space size. In gen-
eral, information hiding is vulnerable to entropy reduc-
tion by whatever means and it is not unlikely that attack-
ers can combine allocation oracles with other techniques.
In our view, it is time to reconsider our dependency on
the pseudo-isolation offered by randomization and opt
instead for stronger isolation solutions like software fault
isolation or hardware protection.

11 Disclosure

We have cooperated with the National Cyber Security
Centre in the Netherlands to coordinate disclosure of the
vulnerabilities to the relevant parties.

12 Acknowledgements

We thank the anonymous reviewers for their valuable
comments. This work was supported by the Euro-
pean Commission through project H2020 ICT-32-2014
“SHARCS” under Grant Agreement No. 644571 and
by Netherlands Organisation for Scientific Research
through project NWO 639.023.309 VICI “Dowsing”.

References
[1] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose,

and A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization,” in IEEE
S&P ’13.

[2] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” in ASIACCS ’15.

[3] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in OSDI’ 14.

[4] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing,” in
USENIX Security ’14.

[5] PaX Team, “Address space layout randomization (ASLR),” 2003,
http://pax.grsecurity.net/docs/aslr.txt.

[6] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping address space leakage for code reuse attacks,”
in CCS ’15.

[7] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in SOSP ’93.

[8] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm,
S. Okasaka, N. Narula, N. Fullagar, and G. Inc, “Native client:
A sandbox for portable, untrusted x86 native code,” in IEEE S&P
’07.

[9] L. Deng, Q. Zeng, and Y. Liu, “ISboxing: An instruction substi-
tution based data sandboxing for x86 untrusted libraries,” in IFIP
SEC ’15, 2015.

[10] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in IEEE S&P ’14.

[11] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz,
“Enabling client-side crash-resistance to overcome diversification
and information hiding,” in NDSS ’16.

[12] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi,
“Missing the point(er): On the effectiveness of code pointer in-
tegrity.”

[13] “CVE-2015-3864,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-3864.

[14] D. Magenheimer, “Memory overcommit... without the commit-
ment,” in Xen Summit, 2008.

[15] “Redis administration,” https://web.archive.org/web/
20150905213905/http://redis.io/topics/admin.

[16] E. Sammer, Hadoop Operations, 2012, ch. 4.

[17] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:
Lightweight kernel protection against return-to-user attacks,” in
USENIX Security ’12.

[18] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control:
On the effectiveness of control-flow integrity under stack at-
tacks,” in CCS ’15.

[19] L. Davi, C. Liebchen, A. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-
oriented programming,” in NDSS ’15.

[20] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis,
“Libdft: Practical dynamic data flow tracking for commodity sys-
tems,” in VEE ’12.

[21] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks
without memory disclosures: Remote side channel attacks on di-
versified code,” in CCS ’14.

[22] “Mmap speedup,” http://www.verycomputer.com/180_
d89089d5a857ed08_1.htm.

[23] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in NDSS ’15.

[24] M. Zhang and R. Sekar, “Control-flow and code integrity for
COTS binaries: An effective defense against real-world ROP at-
tacks,” in ACSAC ’15.

[25] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,
“StackArmor: Comprehensive protection from stack-based mem-
ory error vulnerabilities for binaries,” in NDSS ’15.

[26] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R.
Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical code
randomization resilient to memory disclosure,” in IEEE S&P ’15.

14

http://pax.grsecurity.net/docs/aslr.txt
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://web.archive.org/web/20150905213905/http://redis.io/topics/admin
https://web.archive.org/web/20150905213905/http://redis.io/topics/admin
http://www.verycomputer.com/180_d89089d5a857ed08_1.htm
http://www.verycomputer.com/180_d89089d5a857ed08_1.htm


[27] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s
a TRaP: Table randomization and protection against function-
reuse attacks,” in CCS ’15.

[28] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
CODASPY ’15.

[29] C. L. Kjell Braden, Lucas Davi and M. F. P. L. Ahmad-
Reza Sadeghi, Stephen Crane, “Leakage-resilient layout random-
ization for mobile devices,” in NDSS ’16.

[30] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomiza-
tion,” in CCS ’04.

[31] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Por-
tokalidis, C. Giuffrida, and H. Bos, “Undermining information
hiding (and what to do about it),” in USENIX Security ’16.

[32] “SafeStack,” http://clang.llvm.org/docs/SafeStack.html.

[33] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund,
and T. Walter, “Breaking the memory secrecy assumption,” in
EuroSec ’09.

[34] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced op-
erating system security through efficient and fine-grained address
space randomization,” in USENIX Sec ’12.

[35] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in IEEE S&P ’13.

[36] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Fran-
cillon, “Reverse engineering Intel last-level cache complex ad-
dressing using performance counters,” in RAID ’15.

[37] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est
machina: Memory deduplication as an advanced exploitation
vector,” in IEEE S&P ’16.

A Base EAP-only algorithm

Algorithm 1 Binary search using the Ephemeral Alloca-
tion Primitive; sizes are in pages.

function DEDUCE(low, high)
if low = high then

return low
if high - low = 1 then

res← TEMP-ALLOC(high)
if SUCCESS(res) then

return high
else

return low
mid point← b(high+ low)/2c
res← TEMP-ALLOC(mid point)
if SUCCESS(res) then

return DEDUCE(mid point, high)
else

return DEDUCE(low, mid point−1)

Hole Total Max
A 0B 131068GiB
B 0B 1028GiB
C 0B 4GiB

Table 3: Initial state for a PIE executable

B PAP-only algorithm

For each hole G, we maintain two variables, Gtotal and
Gmax. The first variable tracks the number of bytes allo-
cated from G. The second holds the maximum number
of bytes that may still be allocatable from G at any point
in time. So when an allocation of size S is known to
originate from G, we increase Gtotal by S and decrease
Gmax by S. Crucially, when an allocation of size S fails,
we know that no hole has S bytes available. Therefore,
the max variable for every tracked hole needs to be ad-
justed to S minus the pagesize (see the functions HOLE-
SATISFIED, HOLE-FAILED-TO-SATISFY, called for holes
that satisfied or failed to satisfy an allocation request, re-
spectively).

function HOLE-SATISFIED(size, G)
Gmax← Gmax− size
Gtotal ← Gtotal + size

function HOLE-FAILED-TO-SATISFY(size, G)
if Gmax > size− pagesize then

Gmax← size− pagesize

A state consists of the set of max and total variables
for each tracked hole. In the initial state we may have
some information for the maximum size of each hole, but
no bytes have been allocated during the run of our algo-
rithm, so that Gtotal = 0,∀G. Given the size distributions
in Table 1, the initial state for a simple PIE executable is
as given on Table 3.

Descent mode The algorithm operates in two modes.
Suppose that the highest maximum value (hmv) is unique
across all the tracked holes and G is the hole it is asso-
ciated with (i.e. @H : Gmax = Hmax). In this case, we try
decreasing allocation sizes which can only be satisfied
by G, in the hope that an allocation will succeed, caus-
ing Gmax to be decremented below the next-highest max-
imum (nhmv) value so that we will remain in this mode
for the next step of the algorithm.

There is an inherent tradeoff between the accuracy and
the number of allocations we try. In the extreme, we
could explore the interval [nhmv,hmv] by starting with
hmv and decreasing the allocation size by one page af-
ter each failed attempt. Of course, this would result in
a huge number of allocation attempts, rendering the ap-
proach impractical.

15

http://clang.llvm.org/docs/SafeStack.html


function CALCULATE-STEPS(high, low)
size← high− low
if size = pagesize then

return [high]
step← size/split
sizes← []
idx← 0
for n in 0..(split−1) do

sz← high−n∗ step
rem← sz % pagesize
if rem > 0 then

sz← sz− rem+ pagesize
if idx = 0∨ sizes[idx−1] 6= sz then

sizes[idx]← sz
idx← idx+1

While larger successful allocations are desirable, we
elect to trade some resolution for a reduction in the num-
ber of attempts necessary. The way we do this is by se-
lecting a split factor for the interval [nhmv,hmv], and try-
ing decreasing allocations with an (approximate) step of
hmv−nhmv

split bytes (special considerations need to be made
for respecting page boundaries; see the CALCULATE-
STEPS function). A larger split factor results in more
allocation attempts but higher chanches of quickly mini-
mizing the max variable of G.

At every given step, the allocation might succeed (in
which case we update Gtotal and Gmax) or it might fail
and we appropriately reduce every max variable to just
below the failed allocation size. This means that the
difference between the current hmv and the nhmv keeps
shrinking as allocations fail.

For reasons that will become apparent soon, we are
willing to expend more allocation attempts to avoid the
situation when hmv becomes equal to the nhmv. There-
fore, when the last step above the nhmv results in a failed
allocation, we reiterate the algorithm, again splitting the
interval between the current hmv and the nhmv accord-
ing to the split factor and trying descending allocation
size using a new, smaller, step size. The algorithm con-
tinues trying ever smaller allocations using an ever finer
step size, until the allocation of nhmv+ pagesize bytes.
If that allocation fails, then we have to switch into the
mode where there are multiple highest maximum values
(Algorithm 2, line 34).

Forking mode We are now in a state where there exist
n holes, G1, ...,Gn : G1

max = ... = Gn
max = hmv, i.e. the

hmv has multiplicity n. The only way to make progress is
to try an allocation smaller than hmv; yet if the allocation
succeeds, we are not in a position to tell which hole the
bytes where allocated from. What’s worse, more than
one hole might be able to accommodate the allocation
we attempt.

Algorithm 2 Decision
1: function STATE-MAXES(s)
2: res← /0
3: for all max ∈ MAXES(s) do
4: res← res∪max
5: sorted_maxes← SORT-DESCENDING(maxes)
6: groups← GROUP-BY-MAX(sorted_maxes)
7: result← /0
8: for all g ∈ groups do
9: result← result∪(ANY-MAX(g),COUNT(g))

return result
10: function DETERMINE-GROUPS(states)
11: maxes← /0
12: for all s ∈ states do
13: maxes← maxes∪ STATE-MAXES(s)
14: maxes← SORT-DESCENDING(maxes)
15: groups← GROUP-BY-MAX(maxes)
16: result← /0
17: for all g ∈ groups do
18: g← SORT-DESCENDING-BY-MULTIPLICITY(g)
19: maxval← FIRST(g)
20: result← result ∪maxval
21: return result
22: function DECIDE(states)
23: maxvals← DETERMINE-GROUPS(states)
24: (hmv,m)← FIRST(maxvals)
25: if hmv <= mshs then
26: return states
27: if COUNT(maxvals) = 1 then
28: nhmv← mshs+ pagesize
29: if hmv = nhmv then
30: return states
31: sizes← CALCULATE-STEPS(hmv,nhmv)
32: states← DESCEND(states,m,sizes)
33: return states
34: (nhmv,)← SECOND(states)
35: if nhmv <= mshs then
36: nhmv← mshs+ pagesize
37: if hmv = nhmv then
38: return states
39: sizes← CALCULATE-STEPS(hmv,nhmv)
40: return DESCEND(states, m, sizes)

16



This constitutes a second mode of operation for our
algorithm. After we select an allocation size T , we at-
tempt the to allocate T bytes n times. If all n allocations
succeed, the max values for the n holes all get reduced
by the same amount; if the new maximum values are still
higher than any other maximum value, we remain in the
same mode. If there is now a unique (necessarily differ-
ent) hmv, we switch modes.

We then consider the case when k out of n alloca-
tion attempts succeed. The allocations could have come
out of any set of k holes and there are

(n
k

)
possible

ways to pick the successful holes out of the n we started
with. At this point, we fork the current state into

(n
k

)
new ones, one for each possible combination. In each
newly-created state, k holes get their total variables in-
cremented and their max variables decremented by the
allocated size, whereas the maximum values of the re-
maining n− k states are lowered to below the allocated
size (as we consider the allocation from those holes to
have been a failure). After a fork, we are left with a
number of active states, one of which matches the ac-
tual system state as regards the total allocated bytes for
each hole.

Finally, when all n allocations fail, we need to pick
a new, smaller allocation size. The obvious approach
would be to halve the size for the next allocation at-
tempt. However, this choice leads to a pathological situ-
ation. Recall that every failed allocation attempt causes
all maximum variables to be set to one page below the
attempted value so that, as long as the allocations all fail,
the maximum values are reduced in lockstep. Consider
the case when an allocation succeeds; the new maximum
value for a hole G which is considered successful is set
to G′max = Gmax − allocation_size = Gmax −Gmax/2 =
Gmax/2. Regarding a hole H for which the allocation
was considered a failure, the max variable is updated to
H ′max = allocation_size− pagesize=Hmax/2− pagesize.
Since Gmax was equal to Hmax, the new maximum values
for all the n holes will all be within a page of each other,
which makes it all but certain that after one descent step
we will re-enter the forking mode, which increases the
chances of a combinatorial explosion in the number of
active states.

To increase our chances switching back to descent
mode, we elect to pick the next allocation size exactly
as we do when the hmv is unique.

Generalized Algorithm We extend the algorithm de-
scribed above to operate when there is more than one
active state. Our driving concern is to be able to dif-
ferentiate between active states. To that end, we collect
the highest maximum value of each state. We then at-
tempt a descent from the highest maximum value to the
next-highest maximum value using the split factor, as de-
scribed for the single-state case.

Algorithm 3 Descent
function ALLOCATE(m)

count← 0
for i in 0..m do

if ALLOC( )then
count← count +1

return count
function NSTATE(size, rest, satis f ied, not_satis f ied)

holes← rest
for all G in satis f ied do

holes← holes∪HOLE-SATISFIED(size,G)

for all G in not_satis f ied do
holes ← holes ∪

HOLE-NOT-SATISFIED(size,G)
return CREATE-STATE(holes)

function DO-COMBINE(rest, selected, previous,
count, candidates, accum)

if count = 0 then
nstate← NSTATE(size,rest,selected, previous)
accum← accum∪nstate return accum

else if EMPTY(candidates) then return accum
else

x← FIRST(candidates)
candidates← TAIL(candidates)
accum ← DO-COMBINE(rest,selected ∪

x, previous,count − 1,candidates,accum)) re-
turn DO-COMBINE(rest,selected, previous ∪
x,count,candidates,accum)

function COMBINE(rest, count, candidates)
DO-COMBINE(rest, /0, /0,count,candidates, /0)

function UPDATE-STATES(states, size, count, m)
nstates← /0
for all s ∈ states do

candidates← /0
rest← /0
for all G ∈ HOLES(state) do

if Gmax ≥ size then
candidates← candidates∪G

else
rest← rest ∪G

if COUNT(candidates)≥ count then
res← COMBINE(rest,count,candidates)
nstates← nstates∪ res

return nstates
function DESCEND(states, m, sizes)

for size in sizes do
count← ALLOCATE()
states← UPDATE-STATES(states,size,count,m)
if count > 0 then return DECIDE(states)

17



Split

0 10 20 30 40 50 60 70 80

M
S
H
S
 
(
M
B
)

0

10

20

30

40

50

22 +

21

20

19

18

17

16

Bits

Figure 4: Residual entropy for different value combinations of the split and MSHS parameters (lighter is better)

A crucial insight is that when an allocation succeeds,
all states that have a highest maximum value which can-
not accommodate the successful allocation size are nec-
essarily impossible and are pruned from the set of active
states. This serves to contain the number of active states
and somewhat ameliorate the combinatorial behavior of
the forking mode.

The generalized algorithm (Algorithm 2) treats all
cases (single or multiple states, the hmv is unique or has
multiplicity n) uniformly. First, it considers the maxi-
mum values of the holes within a single state. Multiplic-
ity is established within each state. Following that, the
holes are sorted in descending order based on their max-
imum values and then again in descending order with re-
gard to the multiplicity of each maximum value in the
state it originated from. The number of times an alloca-
tion is repeated is determined by the multiplicity of the
topmost hole; the descent takes place between that hole
and the next hole of a different maximum value.

Intuitively, if we have exactly two states, S1,S2 with
unique hmv values hmv1, hmv2 and that hmv1 = hmv2.
Then we need try an allocation which can only be sat-
isfied by the maximally-sized hole of either state only
once; if the allocation succeeds, both states are updated
and remain valid. Conversely, if hmv1 has multiplicity
two and hmv2 only one, we need to try the allocation two
times. If both allocations succeed, S1 gets updated ac-
cordingly and S2 gets dropped as invalid; if only one allo-
cation succeeds, S1 is replaced by two new states whereas
S2 is adjusted and remains live.

C Further evaluation of the PAP-only at-
tack

When considering Figure 4 visualizes the residual accu-
racy (in bits) in the size of the largest hole next to the
hidden object. The corresponding figure for the smaller
hole appears almost identical and is omitted for brevity.

For the split factor, we investigated values ranging
from 4 to 64, specifically 4, 6, 8, 10, 12, 14, 16, 20, 24,
28, 32, 48 and 64. Guided by a sampling of typical ap-
plications on workstations and servers, we considered the
following upper bounds for the sizes of untracked holes:
2MiB, 4MiB, 6MiB, 8MiB, 20MiB and 40MiB.

Our evaluation of the PAP in weakening ASLR’s pro-
tection of a hidden object involved seeding the algorithm
with an initial state consisting of 4 hole descriptions.
Specifically, we included the maximum possible values
for the holes resulting from the placement of the hidden
object at a random address within hole A. Hence, our
tracked holes were Large, Small, B and C.

Analyzing Figure 4, we notice the tendency for larger
split values to result in lower uncertainty. This tendency
is not consistent and may vary with the MSHS; for exam-
ple, split=48 outperforms split=64 for larger MSHS and
is overall the best choice at larger MSHS values.

The split factor of 4 is by far the worst choice. It
should be mentioned that the runtime performance de-
teriorates to the point of being impractical when using 2
as the split factor (for reasons expounded on in B, which
led us to exclude it from the parameter exploration.

18


	Introduction
	Threat model and assumptions
	Background
	Memory Allocation Oracles
	Crafting primitives
	Breaking IH using the EAP
	Using both the EAP and the PAP
	Using only the PAP
	A more powerful EAP-only attack
	Handling internal allocations

	Discovering Primitives
	Exploiting Timing Side Channels
	Evaluation
	Primitive Discovery Results
	EAP+PAP attack on nginx
	Timing-based attack on lighttpd
	EAP-only attack
	PAP-only attack
	Effectiveness against modern defenses

	Mitigations
	Related work
	Conclusions
	Disclosure
	Acknowledgements
	Base EAP-only algorithm
	PAP-only algorithm
	Further evaluation of the PAP-only attack

