SHARCS: Secure Hardware-Software Architectures for Robust Computing Systems

Sotiris Ioannidis

FORTH
Project Details

- Start date: 2015-01-01
- Duration: 36 months
- Budget: 3,105,762
- Coordinator: FORTH

- Academia
 - FORTH
 - Vrije Universiteit
 - Chalmers
 - TU Braunschweig

- Industry
 - Neurasmus BV
 - OnApp Limited
 - IBM Ltd
 - Elektrobit GMBH
Overview

- Design, build and demonstrate secure-by-design system architectures that achieve end-to-end security
- Analyze and extend each H/W and S/W layer
- Technologies developed directly utilizable by applications and services that require end-to-end security
Motivation

- Systems are as secure as their weakest link
 - Must think in terms of end-to-end security
- Security is typically applied in layers
 - Tighten up one layer and attackers move to another
- Ultimately security mechanisms must be pushed down to the H/W
 - Immutability; Clean and simple API; Secure foundation; Efficiency
- H/W on-chip resources are no longer a problem
 - Billions of transistors on-chip; Exploit parallelism and H/W
- Pushing security to the H/W
 - Benefit: performance, energy/power-efficiency; Challenge: flexibility
- Global adoption of embedded systems
 - No widely deployed security software
Objectives

1. Extend existing H/W and S/W platforms towards developing secure-by-design enabling technologies

2. Leverage H/W technology features present in today’s processors and embedded devices to facilitate S/W-layer security

3. Build methods and tools for providing maximum possible security-by-design guarantees for legacy systems

4. Evaluate acceptance, effectiveness and platform independence of SHARCS technologies and processes

5. Create high impact in the security and trustworthiness of ICT systems
Candidate Hardware Extensions

- Instruction Set Randomization
- Control Flow Integrity
- Information Flow Tracking
- Secure H/W Memory
- Fine-grained Memory Protection
- Dynamic Type Safety
SHARCS Framework

SHARCS H/W-Enabled
- Apps: Medical Implant, Smart Car
- SHARCS Libraries
- SHARCS OS
- SHARCS Hypervisor (OFF)
- SHARCS-Extended CPU

Clean-Slate Approach

High Security

SHARCS Commodity H/W
- Apps: Smart Car, App on Public Cloud
- SHARCS Libraries
- SHARCS OS
- SHARCS Hypervisor
- CPU (x86, ARM)

Hardware Emulation

Less Security

SHARCS Software Only
- Apps: App on Public Cloud, Legacy Apps
- SHARCS Libraries
- SHARCS OS
- SHARCS Hypervisor (OFF)
- CPU (x86, ARM)

Software Monitoring
Applications

- Medical
- Automotive
- Cloud
SHARCS Applications

- Medical Implant
- Smart Car

- Smart Car
- Cloud App

- Cloud App

- SHARCS H/W
- SHARCS Commodity
- SHARCS S/W Only
SHARCS Methodology

Problem phase
- Applications
 - Framework requirements
 - Evaluation metrics

Solution phase
- SHARCS framework
 - Hardware features design
 - Hardware technologies implementation
 - Software features design
 - Software technologies implementation

Outcome phase
- Recommendations for security requirements for next-generation applications
- Market strategy
- Guidelines for building secure-by-design-applications
- Standardization proposal
- New technologies
- New tools

SHARCS-enabled applications
- Application design
 - Secure-by-design applications
- Evaluation of SHARCS framework and applications
More Information

- Visit us on the web: sharcs-project.eu
- Follow us on Twitter: @sharcs_project
- Like us on Facebook: facebook.com/sharcsproject
- Email us at: sotiris@ics.forth.gr
SHARCS: Secure Hardware-Software Architectures for Robust Computing Systems

Sotiris Ioannidis

FORTH